24 research outputs found

    A Study of Entanglement in a Categorical Framework of Natural Language

    Full text link
    In both quantum mechanics and corpus linguistics based on vector spaces, the notion of entanglement provides a means for the various subsystems to communicate with each other. In this paper we examine a number of implementations of the categorical framework of Coecke, Sadrzadeh and Clark (2010) for natural language, from an entanglement perspective. Specifically, our goal is to better understand in what way the level of entanglement of the relational tensors (or the lack of it) affects the compositional structures in practical situations. Our findings reveal that a number of proposals for verb construction lead to almost separable tensors, a fact that considerably simplifies the interactions between the words. We examine the ramifications of this fact, and we show that the use of Frobenius algebras mitigates the potential problems to a great extent. Finally, we briefly examine a machine learning method that creates verb tensors exhibiting a sufficient level of entanglement.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Syntax-Aware Multi-Sense Word Embeddings for Deep Compositional Models of Meaning

    Full text link
    Deep compositional models of meaning acting on distributional representations of words in order to produce vectors of larger text constituents are evolving to a popular area of NLP research. We detail a compositional distributional framework based on a rich form of word embeddings that aims at facilitating the interactions between words in the context of a sentence. Embeddings and composition layers are jointly learned against a generic objective that enhances the vectors with syntactic information from the surrounding context. Furthermore, each word is associated with a number of senses, the most plausible of which is selected dynamically during the composition process. We evaluate the produced vectors qualitatively and quantitatively with positive results. At the sentence level, the effectiveness of the framework is demonstrated on the MSRPar task, for which we report results within the state-of-the-art range.Comment: Accepted for presentation at EMNLP 201

    Resolving Lexical Ambiguity in Tensor Regression Models of Meaning

    Full text link
    This paper provides a method for improving tensor-based compositional distributional models of meaning by the addition of an explicit disambiguation step prior to composition. In contrast with previous research where this hypothesis has been successfully tested against relatively simple compositional models, in our work we use a robust model trained with linear regression. The results we get in two experiments show the superiority of the prior disambiguation method and suggest that the effectiveness of this approach is model-independent

    Compositional Distributional Semantics with Compact Closed Categories and Frobenius Algebras

    Full text link
    This thesis contributes to ongoing research related to the categorical compositional model for natural language of Coecke, Sadrzadeh and Clark in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models that find intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.Comment: Ph.D. Dissertation, University of Oxfor

    Investigating the Role of Prior Disambiguation in Deep-learning Compositional Models of Meaning

    Full text link
    This paper aims to explore the effect of prior disambiguation on neural network- based compositional models, with the hope that better semantic representations for text compounds can be produced. We disambiguate the input word vectors before they are fed into a compositional deep net. A series of evaluations shows the positive effect of prior disambiguation for such deep models.Comment: NIPS 201

    Sentence entailment in compositional distributional semantics

    Get PDF
    Distributional semantic models provide vector representations for words by gathering co-occurrence frequencies from corpora of text. Compositional distributional models extend these from words to phrases and sentences. In categorical compositional distributional semantics, phrase and sentence representations are functions of their grammatical structure and representations of the words therein. In this setting, grammatical structures are formalised by morphisms of a compact closed category and meanings of words are formalised by objects of the same category. These can be instantiated in the form of vectors or density matrices. This paper concerns the applications of this model to phrase and sentence level entailment. We argue that entropy-based distances of vectors and density matrices provide a good candidate to measure word-level entailment, show the advantage of density matrices over vectors for word level entailments, and prove that these distances extend compositionally from words to phrases and sentences. We exemplify our theoretical constructions on real data and a toy entailment dataset and provide preliminary experimental evidence.Comment: 8 pages, 1 figure, 2 tables, short version presented in the International Symposium on Artificial Intelligence and Mathematics (ISAIM), 201
    corecore